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Statistical mechanics and computer simulation of systems
with attractive positive power-law potentials
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We study many-body systems ind dimensions interacting with a purely attractive pair potential
;uxi2xj un, wherexi is the position vector of particlei , andn is a positive parameter. We derive the tempera-
ture in microcanonical equilibrium for arbitraryn andd and, ford51, the corresponding velocity distribution
for a finite numberN of particles. The latter reduces to the Maxwell-Boltzmann distribution in the infinite-
particle limit. The one-dimensional particle distribution of the equilibrium cluster in the mean-field limit is
computed numerically for various potential parametersn. We test these theoretical expressions by comparing
them to extensive computer simulation results of one-dimensional systems and find close agreement forn
51 ~the sheet model! andn54.5. In similar simulations forn51.5 the macroscopic relaxation time exceeded
the length of our simulation runs and the system did not relax towards the known microcanonical equilibrium
state. We also compute full Lyapunov spectra for the linear sheet model and find that the Kolmogorov-Sinai
entropy starts to increase linearly withN for N.10. @S1063-651X~98!01603-1#

PACS number~s!: 05.45.1b, 02.70.Ns, 05.20.2y, 05.70.Ln
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I. INTRODUCTION

We consider a system ofN particles ind dimensions and
with total energyE, described by the Hamiltonian

H5(
i 51

N pi
2

2mi
1

l

N (
i 51

N21

(
j . i

N Uxi2xj

s Un

, ~1!

wherexiPRd, piPRd, andmi are the position, momentum
and mass of particlei , respectively, andnPR1 is a positive
parameter. The total energy isE. The pair potential is of
infinite range and purely attractive,lPR1, sPR1, and the
particles may pass freely through each other. Starting fr
any initial condition such a system is expected to relax
wards a state of thermodynamic equilibrium characterized
a symmetrical cluster distribution of the particles
d-dimensional space, and—forN→`—by the Maxwell-
Boltzmann distribution in momentum space.

The scaling factor 1/N for the potential energy in Eq.~1!
is required for the large-particle limit$N→`,H/N5e, e fi-
nite% to exist. This limit is equivalent to the Vlasov~or
continuous-system! limit $N→`,H[H/N5e,s[m/N→0,
e andm finite% @1# of the rescaled HamiltonianH,

H[
H

N
5(

i 51

N p̃i
2

2s
1

l

N2 (
i 51

N21

(
j . i

N Uxi2xj

s Un

, ~2!

wherep̃i5pi /N are the scaled momenta. In this represen
tion the total massm[Ns and the total energye[E/N are
finite. For simplicity we have assumed here that the sca
particle mass,s5m/N, is the same for all particles.

For the special cased51 and n51 the scaled Hamil-
tonian ~2! applies to a system ofN infinite parallel mass
sheets, where each sheet extends over a plane parallel t
571063-651X/98/57~3!/2763~13!/$15.00
m
-
y

-

d

the

yz plane and moves along thex axis under the mutual gravi
tational attraction of all the other sheets@2,3#. If the uniform
mass density of a sheet is identified withs[m/N, the Hamil-
tonian of the sheet model is usually written in the form

H5(
i 51

N p̃ i
2

2s
12pGs2 (

i 51

N21

(
j . i

N

uxi2xj u, ~3!

whereG is the universal gravitational constant. As is com
mon practice we will refer to the sheets also as particles
masss, moving along thex axis. The mutual crossing of two
such particles will also be referred to as a collision. The to
mass of the system,Ns, is equal to the massm of a single
particle for the unscaled model~1!, and the total energy is
finite,H5e.

The linear sheet model was originally proposed as
model for the dynamics of stars transverse to the gala
plane of a highly flattened galaxy@2,3#, and was recognized
to be of relevance also for plasma physics@4#. Most impor-
tant, however, it has been widely used as a simple mode
studying the surprisingly weak and unclear ergodic prop
ties and complicated relaxation behavior of gravitational s
tems@5–9#. It was originally suggested by Hohl@10,11# that
nonequilibrium states relax to~microcanonical! equilibrium
on time scales of orderN2tc , wheretc is a typical oscillation
period of a particle. Subsequent studies by Wright and Mi
@12,13# established, however, that the actual relaxation ti
is typically orders of magnitude larger than this predicti
and depends strongly on the initial conditions. Furthermo
systems with only a few sheets,N<10, have been shown to
be not even ergodic@14,7#: regularity islands with a finite
measure in phase space exist and prevent the existence
microcanonical equilibrium state in this case. For larger s
tems the relaxation towards equilibrium proceeds throug
2763 © 1998 The American Physical Society
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number of intermediate and long-lived quasistationary sta
@15,16,9#. In spite of all this work it is still not clear whethe
the one-dimensional sheet model relaxes forN.10 towards
a microcanonical equilibrium starting from an arbitrary in
tial condition. There is numerical evidence, however, t
microcanonical equilibrium may be reached for a tw
component mixture of mass sheets with a mass ratio of
@17#.

A condition for the existence of microcanonical equili
rium is that the phase trajectory is fully Lyapunov unstab
All the Lyapunov exponents must be different from ze
with the exception of those directly associated with the m
roscopically conserved quantities and the nonexponentia
pansion in the direction of the phase flow. In the case of
linear sheet model this amounts to four vanishing expone
If the energy hypersurface is ergodic, the existence o
single positive exponent usually implies that altogetherN
22 positive exponents exist. If one considers a whole se
different initial conditions in a small box on the energy su
face, the time constant for spreading these points over
energy surface by the flow is given by 1/hKS, wherehKS is
the Kolmogorov-Sinai entropy@19,18#. For ergodic Hamil-
tonian systemshKS is equal to the sum of all positive
Lyapunov exponents@20#. The Kolmogorov-Sinai entropy
was computed for the sheet model by Benettin, Froesc
and Scheidecker@21# for N<10 and was conjectured to in
crease linearly withN. Since this range corresponds to no
ergodic systems with an energy surface decomposed in
regular region embedded in a chaotic sea@14#, we have ex-
tended these computations to larger systems containing 1
24 sheets and which are believed to be ergodic and mix
@7#.

This paper is organized as follows. Section II is concern
with the microcanonical equilibrium properties. In Sec. II
we consider the most general case of ad-dimensional system
~1! with arbitrary positive potential parametern, and derive,
within the framework of the microcanonical ensemble, t
exact relation between temperature and energy for a fi
numberN of particles. Ford51 and n51 our results re-
duce, up to orderO(1/N), to the well-known expressions fo
the sheet model first obtained by Rybicki@22#. For the re-
mainder of the paper we shall restrict ourselves only to
linear case,d51. In Sec. II B the momentum distributio
rN(p) for linear N-particle systems with arbitraryn.0 is
derived. Forn51 this expression is identical to the familia
result for the sheet model@22#. In Sec. II C we discuss the
particle density distributionn(x) in the mean-field limit,
where we make use of the canonical ensemble. And in S
s
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III we outline Benettin’s exact algorithm@21# for the numeri-
cal computation of the full spectrum of Lyapunov expone
for the sheet model.

In Sec. IV we compare our theoretical results to extens
computer simulations for one-dimensional systems and
selected values of the potential parametern. For n51, the
sheet model, full Lyapunov spectra for systems contain
10, 16, and 24 particles are presented in Sec. IV A. For lar
systems only the two largest exponents were computed
Sec. IV B we study the relaxation properties of systems w
n51.5 and find, surprisingly, an even stronger tendency
remain in very stable quasistationary nonequilibrium sta
than forn51. Systems withn54.5, however, display ‘‘nor-
mal’’ relaxation and mixing behavior, as shown in Sec. IV
We conclude in Sec. V with a discussion of our results an
few remarks concerning the relaxation of these systems
wards equilibrium.

II. MICROCANONICAL EQUILIBRIUM PROPERTIES

A. The microcanonical temperature for arbitrary d and n>0

Let v denote a state point in the full 2dN-dimensional
phase space, andd2dNv[P i 51

N ddxid
dpi . Then the microca-

nonical entropyS(E) is given by

eS~E!/k5CE d2dNvd~E2H !ddS X2(
i

m ixi D
3ddS P2(

i
pi D dd~d21!/2S L2(

i
l i D , ~4!

where the HamiltonianH is given by Eq.~1!. E is the total
energy of the system,k is Boltzmann’s constant, andm i
[mi /( j 51

N mj is the relative mass of particlei . C is a nor-
malization constant. Thed functions constrain the contribut
ing states to the hypersurface characterized by the cons
of motion: ~i! energy, H5E; ~ii ! center of mass,X
5( i 51

N m ixi ; ~iii ! total linear momentum,P5( i 51
N pi . The

condition of stationarity requiresP50; ~iv! total angular mo-
mentum,L5( i 51

N l i , wherel i5xi3pi is the angular momen
tum of particlei . L is a pseudovector withd(d21)/2 inde-
pendent components.

The constrained hypersurface has 2dN2@112d1d(d
21)/2# dimensions, which reduces to 2N23 dimensions for
the linear problem,d51. In addition toP50 we take for the
following also X50, which can always be achieved with
simple translation. Furthermore, we restrict ourselves to
special case of vanishing angular momentum,L50. With
this simplification, and rewriting the condition for energ
conservation, we obtain
one
eS~E!/k5
C

EE d2dNvdS 12
H

E D ddS (
i

m ixi D ddS (
i

pi D dd~d21!/2S (
i

l i D . ~5!

With the transformationp→AEp8 andx→(E/l)1/nx8 the wholeE dependence may be factored out from this integral, and
obtains

eS~E!/k5CEd~1/211/n!~N2d/221/2!21E d2dNv8g~N,n,d,l!d~12H8!ddS (
i

m ix8i D ddS (
i

p8i D dd~d21!/2S (
i

l8i D
5Ed~1/211/n!~N2d/221/2!21I ~N,n,d,l!, ~6!
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where the primed quantities refer to the new coordinatesxi8 and momentapi8 , and the transformed Hamiltonian is given b

H8[
H

E
5(

i 51

N p8i
2

2mi
1

1

N (
i 51

N

(
j . i

Ux8i2x8j

s Un

.

The functiong(N,n,d,l) and the related integralI (N,n,d,l) do not depend on the energyE and will not concern us further
We finally obtain for the entropy

S~E!/k5H S d

2
1

d

n D S N2
d

2
2

1

2D21J lnE1 lnI ~N,n,d,l!

for d>1. The microcanonical temperature follows from

1

T
5

]S

]E

and yields

kT5
E

~d/21d/n!~N2d/221/2!21
. ~7!

It reduces to

kT5
E

~N21!~1/211/n!21
~8!

for the linear case,d51, for which angular momentum conservation does not contribute. The last equation can be co
for n51 to an expression of Rybicki@22#, which differs from Eq.~8! by a term of orderO(1/N). However, the temperature
energy relation in@22# was obtained with the canonical ensemble, which is known to give results that may differ fro
microcanonical ones by terms of precisely that order.

The partition into kinetic and potential energy is a well-known consequence of the virial theorem,

K̄5
n

2
V̄, ~9!

where the bar denotes a time average.

B. Momentum distribution for one-dimensional systems

The derivation of the momentum distribution is slightly more involved than that of the temperature, but proceed
similar arguments as before. For one-dimensional systems angular momentum conservation does not apply andd
function in Eq.~4! is missing. Performing the integration in Eq.~4! over the full configuration space and over the moment
subspace of particles 2 toN, d(2N21)v[P i 51

N dxiP i 52
N dpi , we obtain for the momentum distribution of an arbitrary partic

1,

rN~p1!5C1e2S~E!/kE d~2N21!vd~E2H !ddS (
i

m ixi D dS (
i

pi D , ~10!

whereC1 is a normalization constant. We assume that the mass of all particles is equal,mi5m, and consequentlym i5m for
all i . With the transformationpi→pi82p1 /(N21) (; i .1), andd(2N21)v8[P i 51

N dxiP i 52
N dpi8 , we obtain

rN~p1!5C1e2S~E!/kE d~2N21!v8dS E2
p1

2

2m
2(

i 52

N
@pi82p1 /~N21!#2

2m
2

l

N (
i 51

N21

(
j . i

N Uxi2xj

s UnD
3dS (

i
mxi D dS p11(

i 52

N S pi82
p1

N21D D ,

which, with ( i 52
N pi850 and the notation

H8[(
i 52

N p8 i
2

2m
1

l

N (
i 51

N21

(
j . i

N Uxi2xj

s Un

,
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E8[E2
N

N21

p1
2

2m

leads to

rN~p1!5C1e2S~E!/kE d~2N21!v8d~E82H8!dS (
i 51

N

mxi D dS (
i 52

N

pi8D .

As before, center-of-mass coordinates are used, for whichX50 and P50. With the transformationp8→AE8p9,
x→(E8/l)1/nx9 the wholeE8 dependence may be factored out of the integral,

rN~p1!5E8~N21!~1/n11/2!23/2e2S~E!/kJ~N,n,l!5E~N21!~1/n11/2!23/2S 12
N

N21

p1
2

2mED ~N21!~1/n11/2!23/2

e2S~E!/kJ~N,n,l!,

where the remaining integralJ(N,n,l) depends only on the indicated parameters. Insertion of Eq.~6! for d51 yields

rN~p1!5
1

AE
S 12

N

N21

p1
2

2mED ~N21!~1/n11/2!23/2J~N,n,l!

I ~N,n,l!
.

J/I is determined from

E
2pmax

pmax
dp1rN~p1!51,

wherepmax is the largest momentum accessible to a single particle. For a system with energyE, for which the total momentum
vanishes, the maximum energy transferable to a single particle is given by (N21)E/N. Consequently, pmax

5A2mE(N21)/N. With this, we finally obtain for the momentum distribution of a single particle:

rN~p1!5
G„~N21!~1/n11/2!…

G„~N21!~1/n11/2!21/2…

A N

2p~N21!mES 12
N

N21

p1
2

2mED ~N21!~1/n11/2!23/2

. ~11!

This result generalizes an expression, first derived by Rybicki@22# for the sheet model withn51, to generaln.0.
If we replace the energyE in Eq. ~11! by the temperature according to Eq.~7!, we may perform the limit to large particle

numbers at constantT. Since limN→`(12a/N)N5e2a, we obtain

lim
N→1`

S 12
N

N21

p1
2

2mkT@~N21!~1/n11/2!23/221/n#
D ~N21!~1/n11/2!23/2

5e2p1
2/~2mkT!,
ll-

-
e
a

s
ol

ta
th

the

ss,
tion

a

.

which, after normalization, becomes the familiar Maxwe
Boltzmann distribution in the thermodynamic limit:

r~p1!5A 1

2pmkT
e2p1

2/~2mkT!. ~12!

C. Particle density for one-dimensional systems

In the limit of largeN the force between individual par
ticles becomes negligible as compared to the mean force
erted by all the other particles. Since the potential of me
force is given by the Poisson equation, and the dynamic
the one-particle distribution function is described by the c
lisionless Boltzmann~or Vlasov @23#! equation, the equilib-
rium distribution is a simultaneous and self-consistent s
tionary solution of these equations. For charged particles
idea may be traced back to Debye and Hu¨ckel @24,25#, and
was subsequently also applied to gravitating systems@3,26#.
The computation of the equilibrium particle distributionn(x)
in this mean-field~or Vlasov! limit @1# is carried out within
x-
n
of
-

-
is

the framework of the canonical ensemble by maximizing
entropy functional with respect ton(x) and passing to the
limit N→`. If x is measured relative to the center of ma
n(x) becomes the solution of the self-consistency equa
@27#

n~x!5n0expF2bE dylUx2y

s Un

n~y!G . ~13!

Here, b[1/kT and n0 are Lagrange multipliers, wheren0
ensures the proper normalization*dxn(x)51. For an arbi-
trary nÞ1 we solve this equation numerically by iterating
trial function for n(x).

For the sheet model,n51, the analytic solution of Eq
~13! is well known @3,22#,

n~x!5
bl

4s
cosh22S blx

2s D . ~14!
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This may be verified by splitting the integral in the expone
of Eq. ~13! according to *2`

1`ux2yun(y)dy5*2`
x (x

2y)n(y)dy1*x
1`(y2x)n(y)dy, and by noting that

*dyycosh22y5ytanhy2lncoshy→y→6`0.
For the sheet model also the exact microcanonical par

distribution nN(x) for a finite particle numberN is known.
To facilitate the comparison with our computer-simulati
data in Sec. IV A, we reproduce here also this well-kno
result of Rybicki@22#:

nN~x!5
l~3N25!

2Es (
j 51

N21

Aj
NS 12

j luxu
Es D ~3N27!/2

, ~15!

where

Aj
N5

@~N21!! #2~21! j 21 j

~N212 j !! ~N211 j !!
.

nN(x) also approaches the canonical solution~14! in the
mean-field limit@22#.

III. LYAPUNOV SPECTRUM FOR THE SHEET MODEL

In this section we outline the method of Benettin@21# for
the computation of all Lyapunov exponents for the line
sheet model,n51. It was used recently by Tsuchiyaet al.
@15# to determine the largest exponent for systems contain
up to 512 sheets. Here we apply it to the computation of
full Lyapunov spectrum for systems with 10<N<24. For
N.24 only the two largest exponents are determined. T
method requires the determination of the exact tangent-s
dynamics@28–30# both for the constant-force streaming b
tween collisions and for the interparticle crossing events
the past also approximate methods were used for the m
mum exponent@7,15#, which were based on finite difference
between neighboring trajectories in phase space. For erg
systems the exact and approximate algorithms give com
rable results@15#.

Our restriction to the casen51 is dictated by compute
economy. The casenÞ1 is computationally much more ex
pensive and will be reported separately@31#.

If G(t)5$x1 , . . . ,xN ,p1 , . . . ,pN% denotes a state poin
in phase space, the phase flow is the solution of the equa
of motion Ġ5F(G). In particular, for the components ass
ciated with particlei we find

ẋi5pi /m,

ṗi5~l/Ns!(
j Þ i

@2Q~xj2xi !21#,

whereQ(x) is the Heaviside step function. The flow is cha
acterized by constant-force streaming, interrupted by disc
tinuous force jumps, when two particles cross. For e
Lyapunov exponent we must consider, in addition to the r
erence trajectory G(t), a tangent vector dG(t)
5$dx1 , . . . ,dxN ,dp1 , . . . ,dpN% defined by

dG~ t !5 lim
s→0

Gs~ t !2G~ t !

s
, ~16!
t

le

n

r

g
e

e
ce

n
xi-

dic
a-

ns

n-
h
f-

whereGs(t) is an ~infinitesimally! perturbed trajectory con
nected toG(t) by a parametrized path with parameters such
that lims→0Gs(t)5G(t). The time evolution ofdG(t) is
given by the linearized equations of motion, which for t
components associated withi become

d ẋi5dpi /m,

d ṗi5~2l/Ns!(
j Þ i

~dxj2dxi !d~xj2xi !. ~17!

Between crossing events alld functions are zero. Assuming
that the last crossing of any particles occurred at timet50,
the tangent-vector components evolve according to

dxi~ t !5tdpi~0!/m1dxi~0!,

dpi~ t !5dpi~0!. ~18!

If at some later timet5tcoll.0 two particles,k and l , inter-
sect, only thed functions connecting these two particles co
tribute to Eq.~17!, which for k becomes

d ẋk5dpk /m,

d ṗk5~2l/Ns!~dxl2dxk!d~xl2xk!.

An integration from an instant immediately before (2) to
immediately after (1) the crossing yields the instantaneo
crossing map@21# for the tangent-vector components asso
ated with particlek,

dxk
15dxk

2,

dpk
15dpk

21
2l

NsEtc
2

tcoll
1

~dxl2dxk!d~xl2xk! dt

5dpk
21

2l~dxl2dxk! t5tcoll

Nsu~ ẋl2 ẋk! t5tcoll
u

, ~19!

and similarly forl . The components associated with all oth
particles are unaffected by the crossing ofk andl . Equations
~18! and~19! suffice to construct the exact time evolution
a tangent vectordG(t) in tangent space.

The Lyapunov exponents are defined by

l„dG~0!…5 lim
t→`

1

t
ln

udG~ t !u
udG~0!u

.

According to Oseledec@32# there areL orthonormal initial
vectors dGl(0) yielding a set of exponents$l l%,l
51, . . . ,L, referred to as the Lyapunov spectrum.L is equal
to the phase-space dimension 2N for our linear system. We
order the exponents according tol1>l2>•••>lL . In the
actual computation we follow the reference trajectory
phase space and, simultaneously, the complete set of tan
vectors in tangent space, from one interparticle cross
event to the next. The tangent vectors are periodically re
thonormalized, and the Lyapunov exponents are obtai
from the time-averaged logarithms of the renormalizing fa
tors @28–30#.
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Since for Hamiltonian systems the phase volume is c
served, any expansion in certain phase-space directions
be exactly compensated by a contraction in some other
rections, and the sum of all Lyapunov exponents vanish
Furthermore, due to the symplectic nature of the equation
motion, the Lyapunov exponents appear in conjugate pair
equal magnitude and opposite sign. It suffices to determ
only the positive exponents to obtain the full spectrum
significant saving of computer time. For each quantity co
served by the phase flow one exponent vanishes. In the
dimensional case the conservation of energy, of linear m
mentum, of the center of mass, and the neutral expan
behavior in the flow direction cause four of the exponents
vanish.

IV. COMPUTER SIMULATION

To test our theoretical expressions we have carried
extensive computer simulations for one-dimensional syst
(d51) defined by Eq.~1!. In our numerical work we mea
sure distances in unitsL05s, mass in units of the particle
mass,M05m, energies in unitsE05l, and time in units
T05Ams2/l. In all our simulations the total energy per pa
ticle is taken to be unity in our reduced unit
E/(Nl)[e/l51. In the terminology of the linear shee
model ~3! this means that the total massNs5m, the total
energye, and 2pG are all unity, and that our dimensionles
units for length, velocity, and time are given by

L05
e

2pGm2
,

V05S e

mD 1/2

,

T05
1

2pGmS e

mD 1/2

.

These units differ slightly from the various units used
other authors@21,22,16,9#.

For the initial distribution we take a uniform distributio
in the single-particle m space, limited by the box
@xmin ,xmax#3@pmin ,pmax#. We characterize this initial condi
tion by the ratio of the initial energy ratioK(0)/E or, alter-
natively, by the virial ratio

V~0![
2K~0!

nV~0!
5

2

n

@K~0!/E#

12@K~0!/E#
, ~20!

the ratio of twice the kinetic energy to the product ofn and
the potential energy, at timet50. In microcanonical equilib-
rium V(t→`) must approach 1, a necessary but not su
cient condition for equilibrium.

In the continuum limit such rectangular initial box co
figurations are usually referred to as ‘‘waterbags’’@5,15#,
since in this limit the evolution of the collisionless Boltz
mann~or Vlasov! equation is volume preserving inm space
@26# and results only in a deformation of the contour and
of the volume of the bag. The Vlasov equation has uncou
ably many stationary solutions@33# for the distribution func-
tion in m space. One distinguished solution is the micro
-
ust
i-
s.
of
of
e

a
-
e-

o-
on
o

ut
s

-

t
t-

-

nonical distribution f (p1 ,x1)5n(x1)r(p1), where for the
sheet model the momentum- and particle-density distri
tions are explicitely given by Eqs.~12! and ~14!, respec-
tively.

For the sheet model with a finite number of particles it
found @15# that any initial condition, sampled from such
rectangular box distribution, quickly relaxes towards a qu
sistationary distribution, which depends on its initial viri
ratio, and which may differ significantly from the ultimat
equilibrium distribution predicted by the microcanonic
theory in Sec. II B. It is believed that these extremely lon
lived quasistationary states converge, forN→`, to the true
stationary waterbag solutions of the Vlasov equation. T
relaxation from this stage to the final microcanonical eq
librium is different for variousn and will be discussed be
low.

A. The sheet model,n51

For all simulations with the sheet model we use an ‘‘e
act’’ algorithm similar to that in Refs.@6,11#, stepping from
one crossing event of any two particles to the next. W
double-precision arithmetic the total-energy conservation
of the order of 1 part in 1012 over the whole length of the
runs, which stretch over 23108T0 and involve much more
than 13109 collisions. The length of these simulation runs
comparable only to those of most recent work@9# and is one
order of magnitude larger than in previous studies@15#.

A characteristic periodtc of oscillation for a typical par-
ticle may be estimated@34,35,16# according to tc
5(p/Gmn0)1/2, wheren05bl/(4s) is the equilibrium par-
ticle density at the origin. Sinceb.(3/2)(N/E) from Eq.
~8!, we find

tc52pS 4

3D 1/2s

l S mE

N D 1/2

,

which is 7.3 in our reduced time unit. This may serve
estimate the number of particle oscillations during a giv
time.

We have mentioned already in the Introduction that
relaxation processes towards microcanonical equilibri
proceed~if at all! with much longer time scales@12,13# than
originally suggested@10,11#. In a recent series of paper
Tsuchiya, Konishi, and Gouda@15,16# used the initial rect-
angular box distributions as initial conditions for their sim
lations which involved between 64 and 1000 sheets. T
concluded that three different time regimes may be dis
guished. In thefirst regime, 0,t,Tm , referred to as the
collisionless phase, the initial arbitrary distribution of pa
ticle energies is only slowly relaxed with a so-calledmicro-
scopic relaxationtime Tm'NT0. In the secondregime,Tm
,t,TM , the system stays in a long-lived quasistationa
state, the finite-particle analog of the stationary waterbag
lution in the mean-field limit. The individual particle ene
gies fluctuate diffusively such that the total energy is equa
divided among all particles over an indefinitely long tim
Finally, the so-calledmacroscopic relaxation time TM'4
3104NT0 ~for N<104) marks the transition to thethird re-
gime, which is identified with microcanonical equilibrium
However, Yawn and Miller have noted most recently@9# that
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the equipartition of the energy among all particles is onl
necessary and not a sufficient condition for equilibrium a
that still doubts about the ergodicity of systems withN.10
persist.

We have computed the momentum and particle distri
tions of medium-sized systems for which 10<N<64. The
averaging interval coverst0 to t01108T0 with an offset time
t0>73107T0. According to the previous analysis we ma
safely expect, aftert0, that our systems are in microcanonic
equilibrium, if they are ergodic. The least populated syst
we have studied contains 10 sheets. This corresponds to
critical population and, hence, to the largestN for which the
phase space has been shown to be segmented into iso
regions with distinct ergodic properties@7#. In Figs. 1 and 2
we show, by the diamonds, the time-averaged momen
distribution r10(p) and the particle distributionn10(x), re-
spectively, for this system. We compare these results to
respective predictions for microcanonical equilibrium fro
Eqs.~11! and~15! with N510, represented by the full lines
The agreement is very good. Only very small systematic
ferences between the simulation results and the microcan
cal predictions may be detected, a consequence of the~sta-
tistically insignificant! regular domain in phase spac
supporting stable periodic orbits. Analogous conclusio
have been reached already by Wright and Miller@13# for an
even smaller system withN56. Also shown in Figs. 1 and 2
by the dashed curves, are the many-particle limits from E
~12! and~14!, respectively, where limN→`kT52/3 from Eq.
~8! has been used. The comparison with the simulation d
reveals that a 10-sheet system is not populous enough t
treated by mean-field theory@22#.

As an example for largerN we display in Figs. 3 and 4
analogous data for a 40-sheet system. As expected, the
parison of the simulation results~diamonds! with the micro-
canonical predictions~smooth lines! is excellent, both for the

FIG. 1. Momentum distributionr10(p) for the sheet model (d
5n51), with N510 sheets and initial conditions characterized
a virial ratioV(0)52. The diamonds are simulation results, whe
the system evolved freely fort05108T0 prior to measuring the
distribution. The smooth curve is the microcanonical equilibriu
distribution according to Eq.~11!, and the dashed curve is th
Boltzmann distribution applicable in the thermodynamic limit, E
~12!. The energyE is given in units ofl, andp andrN are mea-
sured in units ofmV0 and (mV0)21, respectively.
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momentum distributionr40(p) in Fig. 3 and the particle dis-
tribution n40(x) in Fig. 4. The system seems to be ergod
and capable of reaching microcanonical equilibrium. A co
parison with the respective mean-field results~dashed
curves! also suggests the usefulness of this limit for su
small particle numbers.

The partition of the total energy into kinetic and potent
contributions has also been tested. In all cases the viria
lation ~9! is well obeyed as may be verified from Table II

For all 6 systems with 16<N<64 investigated by us we

.

FIG. 2. Spatial particle distribution functionn10(x) for the sheet
model (d5n51), with N510 sheets and initial conditions chara
terized by a virial ratioV(0)52. The diamonds are simulation re
sults, where the system evolved freely fort05108T0 prior to mea-
suring the distribution. The smooth curve is the equilibrium parti
distribution according to Eq.~15!, and the dashed curve is th
mean-field approximation Eq.~14! applicable for largeN. The en-
ergyE is given in units ofl, andx andnN are measured in units o
s ands21, respectively.

FIG. 3. Momentum distributionr40(p) for the sheet model (d
5n51), with N540 sheets and initial conditions characterized
a virial ratioV(0)52. The diamonds are simulation results, whe
the system evolved freely fort0573107T0 prior to measuring the
distribution. The smooth curve is the microcanonical equilibriu
distribution according to Eq.~11!. The energyE is given in units of
l, and p and rN are measured in units ofmV0 and (mV0)21,
respectively.
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find similar good agreement for the computed distributio
with their corresponding microcanonical equilibrium analo
as displayed forN540 in Figs. 3 and 4. However, the ver
good agreement forN510 in Figs. 1 and 2 and forN56 in
Ref. @13#, systems for which it is known that the microc
nonical equilibrium does not exist@7#, conveys the warning
that this comparison is not a sensitive test for ergodicity. T
extremely slow convergence of the distributions to their m
crocanonical predictions suggest that small stable and h
erto undetected regions associated with stable periodic o
may persist in the phase space even forN.10 @9#.

As another probe for the study of the thermalization pro
erties the computation of the Lyapunov exponents has b
suggested@21,7,15#. We report here the full Lyapunov spec
tra for systems containingN510, 16, and 24 particles. Fo
the larger systems studied here, with particle numbers ra
ing from 32 to 64, only the two largest exponentsl1 andl2
were computed. The convergence of the respective m
mum exponentsl1 is shown in Fig. 5, where the time wa
reset tot50 after the end of the thermalization periodt0,
which lasted for at least 73107 time units (106 periods of
oscillation!. These curves reveal an interesting behavior
t.107 and the smaller values ofN: the Lyapunov exponents
cumulatively averaged from timet0 ~for which the systems
are believed to be already in microcanoncial equilibrium! to
t01t, show a tendency to increase slowly witht until they
drop in a random and intermittent fashion to a sligh
smaller value within a comparatively short time. This ind
cates that the phase trajectory is intermittently ‘‘caught’’ in
rather restricted region of the phase space with much
violent expansion properties in tangent space. This cau
the cumulative average of the exponents to drop shar
Such regions have been referred to as ‘‘stagnant layers’’@15#
or ‘‘sticky regions’’ @9# and are known to occur near th
boundary of regularity islands in phase space. Only after

FIG. 4. Spatial particle distribution functionn40(x) for the linear
sheet model with 40 sheets. The diamonds are simulation result
initial conditions characterized by a virial ratioK(0)/E50.5. Prior
to measuring the distribution the system evolved freely for 73107

time units. The smooth curve is the equilibrium particle distributi
according to Eq.~15!, and the dashed curve is the mean-field a
proximation Eq.~14! applicable for largeN. The energyE is given
in units of l, andx and nN are measured in units ofs and s21,
respectively.
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trajectory escapes from such a region may the value of
exponents go up again.

In Fig. 6 the Lyapunov spectra for 10-, 16-, and 2
particle systems are shown. All spectra are normalized
their respective maximum exponentsl1, and on the abscissa
we use (N2 l )/(N21). The indexl enumerates conjugate
pairs of exponents such that the most positive and nega
exponents,l1 and l2N , are associated withl 51, the
second-largest exponentl2 and second-smallest exponen
l2N21 with l 52, and, finally, the four vanishing exponent
lN21 , . . . ,lN12 with the indexesN21 and N. For each
spectrum only the positive branch is shown, which includ
N exponents>0 indicated by the points. Since the spect
are for equilibrium systems, the conjugate negative bran

for

-

FIG. 5. Convergence of the maximum Lyapunov exponen
l1(t), as a function of the length of the averaging interval for she
model (d5n51). The number of particles,N, is indicated by the
labels. Prior tot50, at which time the time averaging for the
Lyapunov exponents starts, the system is evolved for at leas
3107T0. Times are measured in units ofT0, and Lyaponov expo-
nents in units ofT0

21.

FIG. 6. Reduced Lyapunov spectra forN510, 16, and 24 par-
ticles, as indicated by the labels, for the sheet model (d5n51). In
the inset a magnified view of the largest exponents is shown, wh
includes also results for systems withN532, 40, and 48. The
Lyaponov exponents are given in units ofT0

21.
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may be obtained as the mirror image around the absc
Only the points have physical significance; the lines are o
drawn for clarity. In the inset we display the largest exp
nents for all spectra and include also data for 32<N<64. As
noted already in Sec. III, four exponents vanish for ea
spectrum, of which two are shown in Fig. 6. The two larg
exponents,l1 ,l2, and, where available, the smallest positi
exponentlN22, and the Kolmogorov-Sinai entropy per pa
ticle, hKS/N, are listed in Table I for variousN.

In Fig. 7 we compare our equilibrium values for the ma
mum Lyapunov exponentl1 ~full squares! with the results
taken from Fig. 13 of Tsuchiya, Konishi, and Gouda@15#.
The agreement in the range of overlappingN is very good.
The maximum forN'16 indicates the system populatio
with the strongest phase-space expansion for~infinitesimal!
perturbations. In the same figure we also compare our res

TABLE I. Selected Lyapunov exponents and the Kolmogoro
Sinai entropy per particle are listed for the sheet model,n51, d
51, andE/Nl51, in equilibrium.N is the particle number,l1, l2,
and lN22 are the maximum, the second largest, and the sma
positive Lyapunov exponents, respectively, andhKS /N is the
Kolmogorov-Sinai entropy per particle. The error for the expone
is estimated from convergence plots similar to Fig. 5 and is ab
60.5% for l1 ,l2, and 61.5% for lN22. All exponents andhKS

are listed in units ofT0
21.

N l1 l2 lN22 hKS /N

10 0.0842 0.0689 0.00535 0.0334
16 0.0864 0.0762 0.00363 0.0366
24 0.0854 0.0777 0.00265 0.0375
32 0.0804 0.0745
40 0.0778 0.0726
48 0.0757 0.0710
64 0.0711

FIG. 7. Particle-number dependence of the maximum Lyapu
exponentl1 ~squares! and of the Kolmogorov-Sinai entropy pe
particle,hKS /N, for the sheet model. These quantities are given
units of T0

21 introduced in the text. The full squares and dots a
results of this work. The exponents represented by open square
from Tsuchiyaet al. @15#, and the data forhKS /N represented by
circles are from Benettinet al. @21#.
a.
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for the Kolmogorov-Sinai entropy per particle,hKS/N ~full
dots!, with the data reported by Benettin, Fro¨schle, and Sc-
heidecker@21# for 3,N,10. These authors conjectured th
hKS increases linearly withN already for N.2. Our ex-
tended plot reveals, however, that such a linear depend
is reached, if at all, only forN exceeding 24. There seems
exist a crossover populationNc'12 where theN dependence
of hKS changes qualitatively. It is likely that this number
related to the critical population of Reidl and Miller@7# for
the ~proven! existence of regions in phase space support
stable periodic orbits.

B. The casen51.5

For nÞ1 the force between the particles depends on th
separation and no analytical solution for the particle traj
tories between successive encounters of any two parti
can be given. In our exploratory work forn51.5 we have
therefore resorted to a resource-saving, but cruder, appr
by solving the equations of motion with a Gear predicto
corrector algorithm@36#, accurate toO(Dt5) in the time step,
and with a fixed time stepDt50.002. In spite of this gross
simplification the resulting code is still 20 times less efficie
than the program forn51. This algorithm is not symplectic
but the relative energy fluctuations do not exceed 0.06%
the full length of the respective runs. This was conside
sufficient for our survey.

Starting with an initial box distribution as before, the sy
tem very quickly relaxes into a quasistationary state that
pends strongly on the initial virial ratioV(0). Thevirial ratio
V̄, time averaged over an interval in this regime and listed
Table II, is very close to unity. The system virializes, but t
momentum and particle density distributions differ signi
cantly from the microcanonical equilibrium distributions,
is demonstrated in Fig. 8 for 0.148<V(0)<12. Such behav-
ior is reminiscent of the sheet model in Sec. IV A, but he
the states are so stable that even after our longest simula
runs no macroscopic relaxation towards microcanon
equilibrium could be detected. For 16 and 40 particles
followed the trajectory for 73106 and 63106 time unitsT0,

-

st

s
ut

v

n
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TABLE II. Tabulation of the virial ratioV̄, averaged over a time
interval in the equilibrium~or quasistationary! states at the end o
the runs, for the one-dimensional models with potential param
n. The initial conditions are characterized by the initial virial rat
V(0), andN is the number of particles. Times are given in units
T0.

n N V(0) V̄

1.0 16 2.00 1.0008
1.0 40 2.00 0.9995

1.5 16 1.33 1.0029
1.5 40 0.15 1.0018
1.5 40 0.57 1.0018
1.5 40 1.33 1.0038
1.5 40 3.11 1.0050
1.5 40 12.00 0.9997

4.5 40 0.44 1.0000
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much longer than the average macroscopic relaxation ti
TM found for the sheet models of comparable size@16#. We
demonstrate this stability of the quasistationary equilibriu
states in Fig. 9 forK(0)/E50.5 corresponding toV(0)
54/3, the broadest of the momentum distributions depict
in Fig. 8. The smooth line in Fig. 9 refers to microcanonic
equilibrium Eq.~11!, whereas the symbols indicate simula
tion results forr40(p) for different averaging time intervals:
0,t,106T0 ~diamonds!, 106T0,t,23106T0 ~crosses!,
and 23106T0,t,33106T0 ~squares!. Corresponding re-
sults for the spatial particle distributionsnN(x) are shown in
Fig. 10, where the symbols have the same meaning as bef
and where the dashed curve is the mean-field solution of

FIG. 8. Momentum distributionsr40(p) for the linear system
with n51.5 andN540 particles. The initial conditions are charac
terized by the energy ratioK(0)/E. For positive momentap also
the microcanonical equilibrium distribution is shown by the dotte
surface. The distributions are time averages in the interval 1.1T0

3105,t,2.13105T0. The energyE is measured in units ofl, p
in units of mV0, andrN in units of (mV0)21.

FIG. 9. Momentum distributionr40(p) for the one-dimensional
model with n51.5, andN540. The initial virial ratioV(0)54/3
corresponds toK(0)/E50.5. The various symbols are simulatio
results and, as indicated by the labels, refer to the time interval u
for averaging. The smooth curve is the analytical equilibrium d
tribution according to Eq.~11!. The energyE and times are given in
units ofl andT0, respectively,p is measured in units ofmV0, and
rN in units of (mV0)21.
e

d
l

re,
q.

~13!. For consistency the latter was computed with a tem
perature obtained by taking theN→` limit of Eq. ~8!: kT
56/7. The mean-field particle density is expected to be a
ready a good representation for the exact equilibrium densi
distribution forN540.

C. The casen54.5

This result, the lack of an observable macroscopic rela
ation of the various distribution functions towards equilib-
rium for n51.5, led us to examine also a one-dimensiona
system with a value ofn far from the regular harmonic-
oscillator casen52, namely,n54.5. The same algorithm as

ed
-

FIG. 10. Spatial particle distributionn40(x) for the one-
dimensional modeln51.5, andN540. The virial ratioV(0)54/3
corresponds toK(0)/E50.5. The various symbols are simulation
results and, as indicated by the labels, refer to the time interval us
for averaging. The dashed curve is the mean-field solution of E
~13! obtained numerically by iteration. The energyE is given in
units ofl, time in units ofT0, distance in units ofs, andnN in units
of s21.

FIG. 11. Relaxation of the momentum distributionrN(p) to-
wards its equilibrium distribution for the linear model withn54.5,
and N540. The virial ratio V(0)54/3 corresponds toK(0)/E
50.5. The distributions are shown for various run timest. Each
distribution is an average over a time interval of width 104T0. Also
displayed, for positivep, is the equilibrium distribution computed
from Eq.~11!. The total energyE and the time are given in units of
l and T0, respectively,p is measured in units ofmV0, andrN in
units of (mV0)21.
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in Sec. IV B was used. But the results are quite different a
much more in accord with physical intuition, as becom
obvious from Fig. 11. There the ‘‘instantaneous’’ momentu
distribution rN540(p) for a 40-particle system is shown a
various timest during the run, starting from an initial con
dition with V(0)50.444. As in all our simulationsE/N51
in our reduced units. We observe that after a time o
3105T0 the system reaches thermal equilibrium and rema
in it thereafter. The nonlinearity of the force introduced
n54.5 suffices to enhance mixing in phase space, and
final distributions are independent of the initial conditions

The momentum and spatial particle distributions for t
equilibrated model are shown in Figs. 12 and 13, resp
tively, where the averaging interval was 23105T0,t,2.2
3106T0. The experimental distributions~diamonds! are
compared to the respective theoretical predictions show
dashed curves, the exact momentum distribution Eq.~11! in
Fig. 12, and the mean-field approximation Eq.~13! in Fig.
13. The latter was obtained by numerical iteration of Eq.~13!
with an initial Gaussian trial function. To be consistent, t
microcanonical temperature for finiteN, Eq. ~8!, was not
used for this calculation, but instead limN→`kT518/13l.
For N540 the mean-field solutionn(x) is expected to devi-
ate only very little from the hitherto unknown exact result f
n54.5. The agreement between simulation and theory
very good in all cases. Also the partition of the total ener
into potential and kinetic contributions, Eq.~9!, is well
obeyed by the simulation results, as may be verified fromV̄
listed in Table II.

V. DISCUSSION

In this paper we study the microcanonical equilibriu
states of many-body systems~1! interacting with a power-
law potential and positive powern. We derived the relation
between temperature and energy for arbitrary dimensiod

FIG. 12. Momentum distributionr40(p) for the linear model
with n54.5, andN540. The initial virial ratioV(0)50.444 The
symbols are simulation results, averaged in the interval 23105T0

,t,2.23106T0. The smooth curve is the microcanonical equili
rium distribution Eq.~11!. The energyE is given in units ofl, p in
units of mV0, andrN in units of (mV0)21.
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and arbitraryn. For the special case of one-dimensional s
tems we obtained also the microcanonical momentum dis
bution function inm space. These results are generalizatio
to arbitraryd and/orn of well-known results ford5n51,
the so-called sheet model@22#. We compared these theore
ical results to extensive computer simulations and found
cellent agreement for the sheet model. This confirms ea
results by Wright and Miller @13#. Also another one-
dimensional system,n54.5, provided excellent agreeme
between simulation and microcanonical prediction. Ho
ever, no agreement was found for an intermediate c
namely,n51.5. This system stubbornly refused to relax
microcanonical equilibrium and remained in a quasistati
ary state over the whole length of the runs, which were
considerable length. The momentum and density distribu
functions of these quasistationary states depend on the
lected nonequilibrium initial condition.

For the sheet model we applied an exact algorithm, fi
developed by Benettin@21#, to the computation of the com
plete Lyapunov spectrum for less populated systems
which N<24. Since the algorithm for the dynamics derive
from Eq.~3! is not parallelizable in principle, the question o
extending our simulations to largerN is closely linked to the
available hardware. We were able to compute the maxim
Lyapunov exponent forN<64 and are working to extend
this range to largerN @31#. Although at present the limited
range ofN for the available data~see Table I! does not allow
the construction of the large-particle limit for the reduc
Lyapunov spectra depicted in Fig. 6, our results make it v
likely that such a limit exists, as is suggested by theory@37#.
We also found in Fig. 7 that the Kolmogorov-Sinai entro
seems to increase linearly with the number of sheets
N.24. A similar statement has been given before@21#, but
this claim was based on data restricted to the range 3<N
<10, for which this proportionality does not apply. Th

FIG. 13. Spatial particle distributionn40(x) for the one-
dimensional model withn54.5, andN540. The initial virial ratio
V(0)50.444 The symbols are simulation results, sampled and
eraged in the interval 23105T0,t,2.23106T0. The smooth curve
is the mean-field solution of Eq.~13! obtained numerically by itera-
tion. The energyE is given in units ofl, x in units ofs, andnN in
units of s21.
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crossover populationNc'12 is only slightly larger than the
critical population of Reidl and Miller@7#. But further data
for larger N are required before any conclusions can
reached. To our knowledge no theoretical predictions e
for the mean-field limit ofhKS/N.
A key issue for many-body systems is the mixing in pha
space and the relaxation from an arbitrary initial condition
equilibrium. For the sheet model (d5n51) it is well known
that, at least forN<10, the phase space is separated i
confined and unconnected regions, one chaotic and at
one regular, which supports stable periodic orbits and KA
tori @7#. Also for N.10 doubts about ergodicity still persis
@9#. We find here forN>10 that after a few million charac
teristic periods of oscillationstc the systems have relaxed
a state, presumably the equilibrium state forN.10, with a
well-defined maximum Lyapunov exponent and, whe
available, a well-defined positive Kolmogorov-Sinai entro
per particlehKS/N. These numbers are listed in Table
1/hKS is the characteristic time it takes for the phase flow
distribute a large number of states, initially in a small ba
over the whole phase space@19,18#. It is surprising that this
time is rather short, whereas relaxation to microcanon
equilibrium takes place on a much longer time scale. T
convergence properties of the maximum exponent forN<32
in Fig. 6 suggest that even in ‘‘equilibrium,’’ to which thi
figure applies, there exist regions in phase space that con
ute little to the growth of small perturbations and in which
arbitrary phase trajectory spends considerable time in an
termittent fashion. This leads to rather well-defined drops
the maximum exponent during the averaging process f
which it recovers only slowly by moving back into the ch
otic sea. The intermittent behavior can only be obser
properly if the time averaging for the Lyapunov exponents
initiated in the equilibrium phase. Whether these ‘‘sticky
e
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@9# or ‘‘stagnant’’ @15# regions form the neighborhood o
regularity islands is not clear.
The lack of any observable relaxation towards equilibriu
for the one-dimensional systems withn51.5 in Sec. IV B is
surprising. The quasistationary distributions, genera
within a few thousand oscillation periods from the initial bo
~waterbag! conditions inm space, virialize and persist un
changed for simulation runs lasting for a few million tim
units. We do not believe that this result is influenced by
fact that these simulations were carried out with a simplifi
and nonsymplectic algorithm, since computational no
would lead to enhanced mixing in phase space. It seems
the global relaxation timeTM increases ifn is raised from its
sheet-model value, unity, to 1.5. It diverges forn approach-
ing the critical value 2 for the harmonic oscillator potentia
This view is supported by the results presented in Sec. IV
for systems withn54.5. The nonlinearity of this pair poten
tial is large enough to induce sufficient mixing in pha
space. At present no Lyapunov exponents and Kolmogor
Sinai entropies are available fornÞ1. Such data are planne
to be reported in our future work@31#.
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