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We study many-body systems id dimensions interacting with a purely attractive pair potential
~|x—x;|", wherex; is the position vector of particle andv is a positive parameter. We derive the tempera-
ture in microcanonical equilibrium for arbitranyandd and, ford=1, the corresponding velocity distribution
for a finite numbem of particles. The latter reduces to the Maxwell-Boltzmann distribution in the infinite-
particle limit. The one-dimensional particle distribution of the equilibrium cluster in the mean-field limit is
computed numerically for various potential parameteriVe test these theoretical expressions by comparing
them to extensive computer simulation results of one-dimensional systems and find close agreement for
=1 (the sheet modglndv=4.5. In similar simulations for=1.5 the macroscopic relaxation time exceeded
the length of our simulation runs and the system did not relax towards the known microcanonical equilibrium
state. We also compute full Lyapunov spectra for the linear sheet model and find that the Kolmogorov-Sinai
entropy starts to increase linearly withfor N>10.[S1063-651X98)01603-1

PACS numbgs): 05.45+b, 02.70.Ns, 05.26-y, 05.70.Ln

[. INTRODUCTION yz plane and moves along ttxeaxis under the mutual gravi-
tational attraction of all the other she¢®3]. If the uniform
We consider a system of particles ind dimensions and mass density of a sheet is identified wsts m/N, the Hamil-

with total energyE, described by the Hamiltonian tonian of the sheet model is usually written in the form
N 2 - N
B p; A N '5 N-1 N
H=2 om *N -Z e @ =3, 5 t216E S, S xl @

wherex; e RY, p, e RY, andm; are the position, momentum, , , o ,
and mass of particle respectively, and < R* is a positive  WhereG is the universal gravitational constant. As is com-

parameter. The total energy & The pair potential is of MON practicg we will refer to the sheets also as particles of
infinite range and purely attractive,e R*, oe R*, and the Masss, moving along thes axis. The mutual crossing of two
particles may pass freely through each other. Starting fronguch particles will also be referred to as a collision. The total
any initial condition such a system is expected to relax to/nass of the systenNs, is equal to the massi of a single
wards a state of thermodynamic equilibrium characterized bpa'ticle for the unscaled model), and the total energy is

a symmetrical cluster distribution of the particles in finite, H=e.

d-dimensional space, and—fdx—o—by the Maxwell- The linear sheet model was originally proposed as a
Boltzmann distribution in momentum space. model for the dynamics of stars transverse to the galactic
The scaling factor N for the potential energy in Eq1)  Plane of a highly flattened galax®,3], and was recognized

is required for the large-particle lim{iN— = ,H/N=e, e fi- to be of relevance also for plasma phydid$ Most impor-

nite} to exist. This limit is equivalent to the Vlasofor tant, however, it ha'ls' been widely used as asimple'model for

continuous-systemlimit {N— o, H=H/N=e€,s=m/N—0, s_tudymg the syrprlsmgly wgak and unclear erg_odl_c proper-

e andm finite} [1] of the rescaled Hamiltoniaf, ties and comphcated_ r_elaxatlon behavior of gravitational sys-
tems[5-9]. It was originally suggested by Hof10,11] that

H N2 N-1 N v nonequilibrium states relax tonicrocanonical equilibrium
p )\ Xi Xj . 2 . . . .
H=— E > > , (2)  ontime scales of ordéM“t., wheret, is a typical oscillation
N~ & 25 N2 =il oo period of a particle. Subsequent studies by Wright and Miller

_ [12,13 established, however, that the actual relaxation time
wherep;=p;/N are the scaled momenta. In this representais typically orders of magnitude larger than this prediction
tion the total massn=Ns and the total energg=E/N are  and depends strongly on the initial conditions. Furthermore,
finite. For simplicity we have assumed here that the scaledystems with only a few sheetd<10, have been shown to
particle masss=m/N, is the same for all particles. be not even ergodi€14,7]: regularity islands with a finite

For the special casd=1 and v=1 the scaled Hamil- measure in phase space exist and prevent the existence of a
tonian (2) applies to a system dN infinite parallel mass microcanonical equilibrium state in this case. For larger sys-
sheets, where each sheet extends over a plane parallel to tteens the relaxation towards equilibrium proceeds through a
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number of intermediate and long-lived guasistationary statell we outline Benettin’s exact algorithfi21] for the numeri-
[15,16,9. In spite of all this work it is still not clear whether cal computation of the full spectrum of Lyapunov exponents
the one-dimensional sheet model relaxesNor 10 towards ~ for the sheet model.

a microcanonical equilibrium starting from an arbitrary ini-  In Sec. IV we compare our theoretical results to extensive
tial condition. There is numerical evidence, however, thatcomputer simulations for one-dimensional systems and for
microcanonical equilibrium may be reached for a two-Selected values of the potential parametefror v=1, the

component mixture of mass sheets with a mass ratio of 1:3heet model, full Lyapunov spectra for systems containing
[17]. 10, 16, and 24 particles are presented in Sec. IV A. For larger

A condition for the existence of microcanonical equilib- SYStems only the two largest exponents were computed. In

rium is that the phase trajectory is fully Lyapunov unstable:S€C: IV B we study the relaxation properties of systems with
v=1.5 and find, surprisingly, an even stronger tendency to

All the Lyapunov exponents must be different from zero, = C yr & L
with the exception of those directly associated with the macicmain in very stable quasistationary nonequilibrium states

. " . than forv=1. Systems withv=4.5, however, display “nor-
roscopically conserved guantities and the nonexponential eX al” relaxation and mixing behavior, as shown in Sec. IV C
pansion in the direction of the phase flow. In the case of th X : '

e conclude in Sec. V with a discussion of our results and a

linear sheet model this amounts to four vanishing exponentse,,; remarks concerning the relaxation of these systems to-
If the energy hypersurface is ergodic, the existence of §.qs equilibrium.

single positive exponent usually implies that altogetNer

— 2 positive exponents exist. If one considers a whole set of |I. MICROCANONICAL EQUILIBRIUM PROPERTIES

different initial conditions in a small box on the energy sur- ) , ,

face, the time constant for spreading these points over the" The microcanonical temperature for arbitrary d and »>0

energy surface by the flow is given byhik, wherehyg is Let w denote a state point in the fulldN-dimensional

the Kolmogorov-Sinai entrop§19,18. For ergodic Hamil- phase space, adf®Nw=TI}_,d%;dp; . Then the microca-

tonian systemshyg is equal to the sum of all positive nonical entropyS(E) is given by

Lyapunov exponent$20]. The Kolmogorov-Sinai entropy

was computed for the sheet model by Benettin, Froeschle, eS(E)“‘ch dZdeé(E—H)éd(X—z Mixi)

and Scheideckdr21] for N<10 and was conjectured to in- [

crease linearly witiN. Since this range corresponds to non-

ergodic systems with an energy surface decomposed into a x &9 P—E pi) 5d<d—1)/2< L—E |i), )

regular region embedded in a chaotic §&4], we have ex- i i

tended these computations to larger systems containing 16 g ore the Hamiltoniam is given by Eq.(1). E is the total

24 sheets and which are believed to be ergodic and MiXiNgnergy of the systemk is Boltzmann’s constant, ang,

[7]. i ) i . . Emi/EJ“=lmj is the relative mass of particie C is a nor-
This paper is organized as follows. Section Il'is concernedyjization constant. Thé functions constrain the contribut-

with the microcanonical equilibrium properties. In Sec. Il A jnq states to the hypersurface characterized by the constants
we consider the most general case dfdimensional system of motion: (i) energy, H=E; (ii) center of mass,X

(1) with arbitrary positive potential parameter and derive, =N uix; (i) total linear momentumP=3N ,p;. The
within the framework of the microcanonical ensemble, thecongition of stationarity requireB=0: (iv) total angular mo-
exact relation between temperature and energy for a f'n't?nentum,L=EiN:1Ii , wherel,=x; X p; is the angular momen-
numberN of particles. Ford=1 and»=1 our results re- tm of particlei. L is a pseudovector witk(d—1)/2 inde-
duce, up to orde©(1/N), to the well-known expressions for pendent components.

the sheet model first obtained by RybidR2]. For the re- The constrained hypersurface hasN-[1+2d+d(d
mainder of the paper we shall restrict ourselves only to the-1)/2] dimensions, which reduces tdN2-3 dimensions for
linear cased=1. In Sec. Il B the momentum distribution the linear problemg=1. In addition toP=0 we take for the
pn(p) for linear N-particle systems with arbitrary>0 is  following also X=0, which can always be achieved with a
derived. Forv=1 this expression is identical to the familiar simple translation. Furthermore, we restrict ourselves to the
result for the sheet mod¢R2]. In Sec. Il C we discuss the special case of vanishing angular momentuns; 0. With
particle density distributiom(x) in the mean-field limit, this simplification, and rewriting the condition for energy
where we make use of the canonical ensemble. And in Seconservation, we obtain

eS(E)/k:gJ’ dZdeé( 1— ﬂ

Eﬁd

Z MiXi

oS n|o 51 .

With the transformatiop— Ep’ andx— (E/\)¥*x’ the wholeE dependence may be factored out from this integral, and one
obtains

eS(E)/k:CEd(1/2+1/v)(Nfd/271/2)71f dZde’g(N,v,d,)\)ﬁ(l—H’)5d<Z Mixri)‘sd(E p/i>5d(dl)/2<2 I,i)
I

_ Ed(l/2+1/v)(Nfd/271/2)*ll (N v.d )\) (6)
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where the primed quantities refer to the new coordinateand momenta, , and the transformed Hamiltonian is given by

! 14

X' =X/

/

SOENES S =

_H
=g~

o

The functiong(N, v,d,\) and the related integr&(N,v,d,\) do not depend on the ener@yand will not concern us further.
We finally obtain for the entropy
N d 1
2 2

for d=1. The microcanonical temperature follows from

1{InE+Inl(N,v,d,N)

[(d
S(E)k={|5+

1 4S
T OE
and vyields
kT= E 7
~ (dl2+d/v)(N—d/2—1/2)—1" ()

It reduces to

E
K= N—D w2 1)1 ®

for the linear casej=1, for which angular momentum conservation does not contribute. The last equation can be compared
for v=1 to an expression of RybickR2], which differs from Eq(8) by a term of ordelO(1/N). However, the temperature-
energy relation if22] was obtained with the canonical ensemble, which is known to give results that may differ from the
microcanonical ones by terms of precisely that order.

The partition into kinetic and potential energy is a well-known consequence of the virial theorem,

K==V, 9

where the bar denotes a time average.

B. Momentum distribution for one-dimensional systems

The derivation of the momentum distribution is slightly more involved than that of the temperature, but proceeds with
similar arguments as before. For one-dimensional systems angular momentum conservation does not apply andl the last
function in Eq.(4) is missing. Performing the integration in Ed) over the full configuration space and over the momentum
subspace of particles 2 t9, d@N" V=11 ,dxII\.,dp;, we obtain for the momentum distribution of an arbitrary particle
1,

pn(P1) = Cleis(E)/kf dN"DyS(E-H) s

2 uixi)a‘(Z pi), (10)

whereC; is a normalization constant. We assume that the mass of all particles is eg&ah, and consequently; = u for
all i. With the transformatiom;—p; —p;/(N—1) (Vi>1), andd®"Ve'=IIN ,dxIIN ,dp/ , we obtain

2 N N-1 N
_ _ p1 [p/ —p1/(N-1)]?
_ SEVK | 4(2N-1), 1 _ M _=
pn(p1)=C,€ fd w'S| E 2m ~ 2m izl 12>I o

o))

8 > pxi|o
I

which, with =} ,p/ =0 and the notation
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, N pi
E=E-N=12m
leads to

N

E MX

=1

{50

As before, center-of-mass coordinates are used, for wbieh0 and P=0. With the transformationp’— \E'p”,
x— (E'IN)Yx" the wholeE’ dependence may be factored out of the integral,

pN<p1>=cle*S<E>’kf AN Vo' 5(E'—H")S

pN(pl) — E/(N—l)(l/y+1/2)—3/2e—S(E)/kJ(N' V,)\) — E(N—l)(l/v+l/2)—3/2 1— —— e_S(E)/kJ(N,V,)\),

N—12mE

N Pi )(Nl)(l/v+1/2)3/2

where the remaining integrd(N, »,\) depends only on the indicated parameters. Insertion of@gdor d=1 yields

( ):il_ N p% (N—l)(l/v+l/2)—3/2J(N'V,)\)
PNPY= T 2T =1 2mE (N, v\

J/l is determined from

Pmax
f, dp;pn(p1)=1,

Pmax

wherephaxis the largest momentum accessible to a single particle. For a system with &dogyvhich the total momentum
vanishes, the maximum energy transferable to a single particle is given Noy1)JE/N. Consequently, ppmax
=2mE(N—1)/N. With this, we finally obtain for the momentum distribution of a single particle:

_ T((N—1)(1v+1/2)) \/T/ N p? )<Nl><1’”1’2>3’2
PNPY=F(N— D)t 17212 V2m(N-DmE| -~ N—1 2mE : (1)

This result generalizes an expression, first derived by RyhR%ifor the sheet model witlv=1, to generalv>0.
If we replace the energl in Eq. (11) by the temperature according to Ed@), we may perform the limit to large particle
numbers at constarit. Since limy_...(1—a/N)N=e~2, we obtain

p?

_ — @ Pil(2mkT
N—1 2mkT (N—1)(1/v+ 1/2)—3/2—1/v] ’

(N=1)(1/v+1/2)—3/2
lim ( 1 )

N— 4+

which, after normalization, becomes the familiar Maxwell- the framework of the canonical ensemble by maximizing the
Boltzmann distribution in the thermodynamic limit: entropy functional with respect to(x) and passing to the
limit N—oo. If x is measured relative to the center of mass,

_ p2I(2mkT) n(x) becomes the solution of the self-consistency equation
e 12 127

v

=y n(y)

C. Particle density for one-dimensional systems n(x)= noexp{ _/3J dyN|— : (13

g

In the limit of largeN the force between individual par-
ticles becomes negligible as compared to the mean force ex-
erted by all the other particles. Since the potential of mearere, 5=1KkT andn, are Lagrange multipliers, wheng,
force is given by the Poisson equation, and the dynamics dg#nsures the proper normalizatiguixn(x) =1. For an arbi-
the one-particle distribution function is described by the col-trary v# 1 we solve this equation numerically by iterating a
lisionless Boltzmanrior Vlasov[23]) equation, the equilib- trial function for n(x).
rium distribution is a simultaneous and self-consistent sta- For the sheet modely=1, the analytic solution of Eq.
tionary solution of these equations. For charged particles thi€L3) is well known[3,22],
idea may be traced back to Debye andckiel [24,25, and
was subsequently also applied to gravitating systESi5).
The computation of the equilibrium particle distributio(x)

BAX
in this mean-fieldlor Vlasoy limit [1] is carried out within (149

A
n(x)= 'f—acosh‘z(z .
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This may be verified by splitting the integral in the exponentwhereI'y(t) is an (infinitesimally) perturbed trajectory con-

of Eg. (13) according to [FZ|x—y[n(y)dy=/*_.(x nected tal(t) by a parametrized path with paramesesuch

—y)n(y)dy+ f;r”(y—x)n(y)dy, and by noting that that lim_ oIy (t)=I(t). The time evolution ofdI'(t) is

fdyycoshfzy:ytanry—Incosry—>yﬁix0. given by the linearized equations of motion, which for the
For the sheet model also the exact microcanonical particl€omponents associated wittbecome

distribution ny(x) for a finite particle numbeN is known.

To facilitate the comparison with our computer-simulation ;= op;/m,

data in Sec. IV A, we reproduce here also this well-known

result of Rybicki[22]: 5bi:(2)\/NU)E (%= %) (X~ X;). (17)
i

, (15 Between crossing events dllfunctions are zero. Assuming
that the last crossing of any particles occurred at ttm®,
the tangent-vector components evolve according to

N-1 . _
0= XNl NP
N 2B & T Eo

where

" [(N=1)112(— 1)1 7% oxi(t)=tdp;(0)/m+ 6x;(0),

FO(N=1=)I(N=1+))!” 5p;(t)=6p;(0). (18)

ny(x) also approaches the canonical solutidd) in the |f at some later time¢=t,,>0 two particlesk andl, inter-
mean-field limit[22]. sect, only thes functions connecting these two particles con-
tribute to Eq.(17), which for k becomes
Ill. LYAPUNOV SPECTRUM FOR THE SHEET MODEL .
OX = opy/m,

In this section we outline the method of Beneftii] for
the computation of all Lyapunov exponents for the linear SPk= (2NN (8%, — 6%, ) 8(X — X,).
sheet modely=1. It was used recently by Tsuchiy al.
[15] to determine the largest exponent for systems containingn integration from an instant immediately before ) to
up to 512 sheets. Here we apply it to the computation of thémmediately after ¢) the crossing yields the instantaneous
full Lyapunov spectrum for systems with ¥IN<24. For  crossing map21] for the tangent-vector components associ-
N>24 only the two largest exponents are determined. Thated with particlek,
method requires the determination of the exact tangent-space N B
dynamics[28—-3(Q both for the constant-force streaming be- OX "= 0Xk
tween collisions and for the interparticle crossing events. In
the past also approximate methods were used for the maxi-
mum exponent7,15], which were based on finite differences

+ — 2)\ t(-:*—oll
5pk :5pk +_NO' - (5X|_5Xk)5(X|_Xk) dt
between neighboring trajectories in phase space. For ergodic ¢

systems the exact and approximate algorithms give compa- 2N (6% = Xi=t,

rable result§15]. =6p + — , (29
Our restriction to the case=1 is dictated by computer NG|(X|_Xk)t:tcoll|

economy. The case+#1 is computationally much more ex- o ) .

pensive and will be reported separatfBy]. and similarly forl. The components associated with all other
If T(t)={X1, ... Xn.P1, .-..,Pn} denotes a state point particles are unaffected by the crossingkaindl. Equations

in phase space, the phase flow is the solution of the equatiortd8) and(19) suffice to construct the exact time evolution of

of motionI"'= F(T). In particular, for the components asso- a tangent vectoBT'(t) in tangent space.
ciated with particld we find The Lyapunov exponents are defined by

X =p;/ sT(0))= i o o)
Xi=p;/m, A (ST( ))—IIT;Y nm-
bi=()\/No)2 [20(x;—x;)—1], According to Oseledef32] there areL orthonormal initial
17 vectors oI(0) vyielding a set of exponents{\},l
=1,... L, referred to as the Lyapunov spectrumis equal

Wher¢®(x) is the Heaviside step fu_nctlt_)n. The flow is c_har to the phase-space dimensioN 2or our linear system. We
acterized by constant-force streaming, interrupted by discon- )
. . . order the exponents according X@=\,=---=\,. In the
tinuous force jumps, when two particles cross. For each ; . .

) . e actual computation we follow the reference trajectory in
Lyapunov exponent we must consider, in addition to the ref-

) phase space and, simultaneously, the complete set of tangent
erence trajectory I'(t), a tangent vector SI'(t) : : . .
(8%, . X2 D1, - . Spy) defined by vectors in tangent space, from one interparticle crossing

event to the next. The tangent vectors are periodically reor-
r(t)-T(t) thonormalized, and the Lyapunov exponents are obtained
ST(t)= lim—————— (16)  from the time-averaged logarithms of the renormalizing fac-
50 S tors[28-30.
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Since for Hamiltonian systems the phase volume is connonical distributionf(p;,X;)=n(xy)p(p;), where for the
served, any expansion in certain phase-space directions musieet model the momentum- and particle-density distribu-
be exactly compensated by a contraction in some other diions are explicitely given by Eqg12) and (14), respec-
rections, and the sum of all Lyapunov exponents vanishegively.

Furthermore, due to the symplectic nature of the equations of For the sheet model with a finite number of particles it is
motion, the Lyapunov exponents appear in conjugate pairs dbund [15] that any initial condition, sampled from such a
equal magnitude and opposite sign. It suffices to determineectangular box distribution, quickly relaxes towards a qua-
only the positive exponents to obtain the full spectrum, asistationary distribution, which depends on its initial virial
significant saving of computer time. For each quantity convatio, and which may differ significantly from the ultimate
served by the phase flow one exponent vanishes. In the onegquilibrium distribution predicted by the microcanonical
dimensional case the conservation of energy, of linear motheory in Sec. Il B. It is believed that these extremely long-
mentum, of the center of mass, and the neutral expansidived quasistationary states converge, fbrcc, to the true
behavior in the flow direction cause four of the exponents tostationary waterbag solutions of the Vlasov equation. The
vanish. relaxation from this stage to the final microcanonical equi-

librium is different for variousy and will be discussed be-
IV. COMPUTER SIMULATION low.

To test our theoretical expressions we have carried out
extensive computer simulations for one-dimensional systems A. The sheet modely=1
(d=1) defined by Eq(1). In our numerical work we mea- For all simulations with the sheet model we use an “ex-
sure distances in units,=o, mass in units of the particle act” algorithm similar to that in Refd.6,11], stepping from
mass,My=m, energies in unitEy=X\, and time in units one crossing event of any two particles to the next. With
To=Vma?/\. In all our simulations the total energy per par- double-precision arithmetic the total-energy conservation is
ticle is taken to be unity in our reduced units, of the order of 1 part in 1§ over the whole length of the
E/(NN\)=e/A=1. In the terminology of the linear sheet runs, which stretch over210°T, and involve much more
model (3) this means that the total madss=m, the total than 1x 10° collisions. The length of these simulation runs is
energye, and 27 G are all unity, and that our dimensionless comparable only to those of most recent wi@k and is one

units for length, velocity, and time are given by order of magnitude larger than in previous studies).
A characteristic period, of oscillation for a typical par-
€ ticle may be estimated[34,35,14 according to t.
Lo= 2mGMe = (7/Gmny) Y2, wheren,= B\/(40) is the equilibrium par-
ticle density at the origin. Sinc@=(3/2)(N/E) from Eq.
e\ 12 (8), we find

VO:(E) ’ 4\12¢( mE| 12
‘c:”(@) X(W) '

1 € 1/2
S
ZwGmm which is 7.3 in our reduced time unit. This may serve to
These units differ slightly from the various units used byestimate the number of particle oscillations during a given
other author$21,22,16,9. time.

For the initial distribution we take a uniform distribution =~ We have mentioned already in the Introduction that the
in the single-particle u space, limited by the box relaxation processes towards microcanonical equilibrium
[Xmin+Xmaxd X[ Pmin+ Pmad - We characterize this initial condi- Proceedif at all) with much longer time scalgd.2,13 than
tion by the ratio of the initial energy ratiki(0)/E or, alter-  originally suggested10,11. In a recent series of papers
natively, by the virial ratio Tsuchiya, Konishi, and Goudd5,16 used the initial rect-

angular box distributions as initial conditions for their simu-
2K(0) 2 [K(0)/E] lations which involved between 64 and 1000 sheets. They
n0)= wV(0) - 1-[K(0)/E]’ (200 concluded that three different time regimes may be distin-
guished. In thefirst regime, 0<t<T,,, referred to as the
the ratio of twice the kinetic energy to the productioind  collisionless phase, the initial arbitrary distribution of par-
the potential energy, at tinte=0. In microcanonical equilib- ticle energies is only slowly relaxed with a so-call@dicro-
rium V(t—o) must approach 1, a necessary but not suffi-scopic relaxationime T,,~NT,. In the secondregime, T,

cient condition for equilibrium. <t<Ty, the system stays in a long-lived quasistationary
In the continuum limit such rectangular initial box con- state, the finite-particle analog of the stationary waterbag so-
figurations are usually referred to as “waterbagi8,15], lution in the mean-field limit. The individual particle ener-

since in this limit the evolution of the collisionless Boltz- gies fluctuate diffusively such that the total energy is equally
mann(or Vlasoy equation is volume preserving jm space divided among all particles over an indefinitely long time.
[26] and results only in a deformation of the contour and notFinally, the so-calledmacroscopic relaxation time \j~4

of the volume of the bag. The Vlasov equation has uncountx 10*°NT, (for N<104) marks the transition to thaird re-
ably many stationary solutioi83] for the distribution func- gime, which is identified with microcanonical equilibrium.
tion in u space. One distinguished solution is the microca-However, Yawn and Miller have noted most recerly that
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T 0.4 T T T T T

FIG. 1. Momentum distributio,o(p) for the sheet modeld FIG. 2. Spatial particle distribution functiam(x) for the sheet
=p=1), with N=10 sheets and initial conditions characterized by model @=v=1), with N=10 sheets and initial conditions charac-
a virial ratio (0)=2. The diamonds are simulation results, where terized by a virial ratio)(0)=2. The diamonds are simulation re-
the system evolved freely for,=10°T, prior to measuring the Sults, where the system evolved freely fgr=10°T, prior to mea-
distribution. The smooth curve is the microcanonical equilibriumsuring the distribution. The smooth curve is the equilibrium particle
distribution according to Eq(11), and the dashed curve is the distribution according to Eq(15), and the dashed curve is the
Boltzmann distribution applicable in the thermodynamic limit, Eq. mean-field approximation E¢14) applicable for largeN. The en-
(12). The energyE is given in units of\, andp andpy are mea-  €rgyE is given in units ofs, andx andny are measured in units of
sured in units oimV, and MVy) ~%, respectively. o ando ™!, respectively.

the equipartition of the energy among all particles is only amomentum distributiom,o(p) in Fig. 3 and the particle dis-
necessary and not a sufficient condition for equilibrium andribution n,o(x) in Fig. 4. The system seems to be ergodic
that still doubts about the ergodicity of systems witb-10  and capable of reaching microcanonical equilibrium. A com-
persist. parison with the respective mean-field resulidashed
We have computed the momentum and particle distribueurves also suggests the usefulness of this limit for such
tions of medium-sized systems for which<tB8l=<64. The small particle numbers.
averaging interval covets, to to+ 10T, with an offset time The partition of the total energy into kinetic and potential
to=7X10'T,. According to the previous analysis we may contributions has also been tested. In all cases the virial re-
safely expect, aftet, that our systems are in microcanonical lation (9) is well obeyed as may be verified from Table 1.
equilibrium, if they are ergodic. The least populated system For all 6 systems with 18 N<64 investigated by us we
we have studied contains 10 sheets. This corresponds to the
critical population and, hence, to the largdktor which the
phase space has been shown to be segmented into isolat
regions with distinct ergodic properti¢g]. In Figs. 1 and 2
we show, by the diamonds, the time-averaged momentun
distribution p,¢(p) and the particle distributiom;q(x), re-
spectively, for this system. We compare these results to th
respective predictions for microcanonical equilibrium from
Egs.(11) and(15) with N= 10, represented by the full lines.
The agreement is very good. Only very small systematic dif-
ferences between the simulation results and the microcanon
cal predictions may be detected, a consequence ofstiae
tistically insignificanf regular domain in phase space
supporting stable periodic orbits. Analogous conclusions
have been reached already by Wright and Mi[lE8] for an
even smaller system with=6. Also shown in Figs. 1 and 2, P
by the dashed curves, are the many-particle limits from Eqgs.
(12) and(14), respectively, where lij....kT=2/3 from Eq. FIG. 3. Momentum distributiom,q(p) for the sheet modeld
(8) has been used. The comparison with the simulation data ,,— 1), with N=40 sheets and initial conditions characterized by
reveals that a 10-sheet system is not populous enough to Beyirial ratio 1(0)=2. The diamonds are simulation results, where
treated by mean-field theof®2]. the system evolved freely fdg="7x 10'T, prior to measuring the
As an example for largelN we display in Figs. 3 and 4 distribution. The smooth curve is the microcanonical equilibrium
analogous data for a 40-sheet system. As expected, the comfistribution according to Eq11). The energ)E is given in units of
parison of the simulation resul{diamonds$ with the micro- A, and p and py are measured in units ahV, and MmV,) 2,
canonical predictionésmooth linesis excellent, both for the respectively.
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009 .

0.085

FIG. 4. Spatial particle distribution functiam,(x) for the linear FIG. 5. Convergence of the maximum Lyapunov exponents
sheet model with 40 sheets. The diamonds are simulation results fav1(t), as a function of the length of the averaging interval for sheet
initial conditions characterized by a virial rati(0)/E=0.5. Prior ~ model {d=v»=1). The number of particlesy, is indicated by the
to measuring the distribution the system evolved freely ferip’ ~ labels. Prior tot=0, at which time the time averaging for the
time units. The smooth curve is the equilibrium particle distributionLyapunov exponents starts, the system is evolved for at least 7
according to Eq(15), and the dashed curve is the mean-field ap-* 10'To. Times are measured in units &, and Lyaponov expo-
proximation Eq.(14) applicable for largeN. The energyE is given ~ Nnents in units offy ™.
in units of A, andx andny are measured in units af and o,
respectively. trajectory escapes from such a region may the value of the

exponents go up again.
find similar good agreement for the computed distributions N Fig. 6 the Lyapunov spectra for 10-, 16-, and 24-
with their corresponding microcanonical equilibrium analogsPa'ticle systems are shown. All spectra are normalized by
as displayed foN=40 in Figs. 3 and 4. However, the very their respective maximum exponem@ and on the absmssa
good agreement faN=10 in Figs. 1 and 2 and fak=6 in  We use N—I)/(N—1). The indexl enumerates conjugate
Ref. [13], systems for which it is known that the microca- P&irs of exponents such that the mo-st posmye and negative
nonical equilibrium does not exi§7], conveys the warning ©€XPonents,\; and Apy, are associated witi=1, the
that this comparison is not a sensitive test for ergodicity. The€cond-largest exponent, and second-smallest exponent
extremely slow convergence of the distributions to their mi-*2n—1 With 1=2, and, finally, the four vanishing exponents
crocanonical predictions suggest that small stable and hitftn-1. - - - An+2 With the indexesN—1 andN. For each
erto undetected regions associated with stable periodic orbiectrum only the positive branch is shown, which includes
may persist in the phase space evenNor 10 [9]. N exponents=0 indicated by the points. Since th_e spectra

As another probe for the study of the thermalization prop-aré for equilibrium systems, the conjugate negative branch
erties the computation of the Lyapunov exponents has been
suggested21,7,19. We report here the full Lyapunov spec-
tra for systems containiny=10, 16, and 24 patrticles. For
the larger systems studied here, with particle numbers rang-
ing from 32 to 64, only the two largest exponeRtsand ,
were computed. The convergence of the respective maxi-
mum exponents.; is shown in Fig. 5, where the time was
reset tot=0 after the end of the thermalization peritg
which lasted for at least 210’ time units (18 periods of
oscillation. These curves reveal an interesting behavior for
t>10’ and the smaller values df: the Lyapunov exponents,
cumulatively averaged from timg (for which the systems
are believed to be already in microcanoncial equilibnitm
to+t, show a tendency to increase slowly withuntil they
drop in a random and intermittent fashion to a slightly -
smaller value within a comparatively short time. This indi- 0 0.2 0.4 06 0.8 1
cates that the phase trajectory is intermittently “caught” in a (N=0/(N-1)
rather restricted region of the phase space with much less

violent expansion properties in tangent space. This causes FIG. 6. Reduced Lyapunov spectra fde=10, 16, and 24 par-
the cumulative average of the exponents to drop sharplyticles, as indicated by the labels, for the sheet model ¢=1). In
Such regions have been referred to as “stagnant layi'S|'  the inset a magnified view of the largest exponents is shown, which
or “sticky regions” [9] and are known to occur near the includes also results for systems with=32, 40, and 48. The
boundary of regularity islands in phase space. Only after theyaponov exponents are given in units B *.

At/ A
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TABLE I. Selected Lyapunov exponents and the Kolmogorov-  TABLE II. Tabulation of the virial ratioV, averaged over a time
Sinai entropy per particle are listed for the sheet modell, d  interval in the equilibrium(or quasistationadystates at the end of
=1, andE/NA =1, in equilibrium.N is the particle numbeny, A, the runs, for the one-dimensional models with potential parameter
and \y_, are the maximum, the second largest, and the smallesf, The initial conditions are characterized by the initial virial ratio

positive Lyapunov exponents, respectively, ahgs/N is the  1)0), andN is the number of particles. Times are given in units of
Kolmogorov-Sinai entropy per particle. The error for the exponentsr,,

is estimated from convergence plots similar to Fig. 5 and is about
+0.5% forky,N\,, and =1.5% for \y_,. All exponents andgg v N (0) v
are listed in units off, *.

1.0 16 2.00 1.0008
N N A AN-2 hks/N 1.0 40 2.00 0.9995
10 0.0842 0.0689 0.00535 0.0334 15 16 1.33 1.0029
16 0.0864 0.0762 0.00363 0.0366 1.5 40 0.15 1.0018
24 0.0854 0.0777 0.00265 0.0375 1.5 40 0.57 1.0018
32 0.0804 0.0745 15 40 1.33 1.0038
40 0.0778 0.0726 15 40 3.11 1.0050
48 0.0757 0.0710 15 40 12.00 0.9997
o4 0.0711 4.5 40 0.44 1.0000

may be obtained as the mirror image around the abscissa.

Only the points have physical significance; the lines are onlyor the Kolmogorov-Sinai entropy per particlegs/N (full

drawn for clarity. In the inset we display the largest expo-dots, with the data reported by Benettin, Bohle, and Sc-

nents for all spectra and include also data fo32<64. As  heideckef21] for 3<N<10. These authors conjectured that

noted already in Sec. Ill, four exponents vanish for eacHks increases linearly wittN already forN>2. Our ex-

spectrum, of which two are shown in Fig. 6. The two largesttended plot reveals, however, that such a linear dependence

exponentsh 1 ,\,, and, where available, the smallest positiveis reached, if at all, only foN exceeding 24. There seems to

exponent\_,, and the Kolmogorov-Sinai entropy per par- exist a crossover populatiot,~ 12 where theN dependence

ticle, hxs/N, are listed in Table | for variousl. of hyxg changes qualitatively. It is likely that this number is
In Fig. 7 we compare our equilibrium values for the maxi- related to the critical population of Reidl and MillgF] for

mum Lyapunov exponent, (full square$ with the results  the (proven existence of regions in phase space supporting

taken from Fig. 13 of Tsuchiya, Konishi, and Goudd).  stable periodic orbits.

The agreement in the range of overlappMgs very good.

The maximum forN~16 indicates the .sysFer.n 'population B. The caser=15

with the strongest phase-space expansion(ifdimitesima)

perturbations. In the same figure we also compare our results For »#1 the force between the particles depends on their
separation and no analytical solution for the particle trajec-

tories between successive encounters of any two particles

0.09 — T can be given. In our exploratory work far=1.5 we have
0.08 L '/'\\i\. i therefore resorted to a resource-saving, but cruder, approach
M by solving the equations of motion with a Gear predictor-
0.07 - ] corrector algorithni36], accurate t@(At®) in the time step,
0.06 - J and with a fixed time stegdt=0.002. In spite of this gross
g simplification the resulting code is still 20 times less efficient
0.05 - D ] than the program for=1. This algorithm is not symplectic,
0.04 | hks/N 4 but the relative energy fluctuations do not exceed 0.06% for
> the full length of the respective runs. This was considered
0.03 I o6 ] sufficient for our survey.
0.02 | 2 . Starting with an initial box distribution as before, the sys-
001 L 0,,05 | tem very quickly relaxes into a quasistationary state that de-
’ pends strongly on the initial virial ratit(0). Thevirial ratio
01 — ""1'0 '1'(')0 T 00 V, time averaged over an interval in this regime and listed in
N Table Il, is very close to unity. The system virializes, but the

momentum and particle density distributions differ signifi-

FIG. 7. Particle-number dependence of the maximum Lyapuno@@ntly from the microcanonical equilibrium distributions, as

exponent\; (squares and of the Kolmogorov-Sinai entropy per 1S demonstrated in Fig. 8 for 0.148/(0)=12. Such behav-
particle, hs/N, for the sheet model. These quantities are given iniOr is reminiscent of the sheet model in Sec. IV A, but here

units of T, * introduced in the text. The full squares and dots arethe states are so stable that even after our longest simulation
results of this work. The exponents represented by open squares diénS N0 macroscopic relaxation towards microcanonical
from Tsuchiyaet al. [15], and the data fohys/N represented by equilibrium could be detected. For 16 and 40 particles we
circles are from Benettiet al. [21]. followed the trajectory for ¥ 10° and 6x 1P time unitsT,,
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FIG. 8. Momentum distributiong,¢(p) for the linear system
with v=1.5 andN =40 particles. The initial conditions are charac-
terized by the energy rati&(0)/E. For positive moment@ also
the microcanonical equilibrium distribution is shown by the dotted
surface. The distributions are time averages in the intervalyl.1
X 10P<t<2.1X 10°T,. The energyE is measured in units of, p FIG. 10. Spatial particle distributiom,y(x) for the one-
in units of MVy, andpy in units of (MVp) 2. dimensional modeb=1.5, andN=40. The virial ratio)(0)=4/3

corresponds td(0)/E=0.5. The various symbols are simulation
results and, as indicated by the labels, refer to the time interval used

hi h h . | . ._for averaging. The dashed curve is the mean-field solution of Eq.
much longer than the average macroscopic re'axation t'm?13) obtained numerically by iteration. The enerByis given in

Ty found for the sheet models of comparable 4i76]. We units of\, time in units ofT, distance in units of, andny in units
demonstrate this stability of the quasistationary equilibriumgs -1

states in Fig. 9 forK(0)/E=0.5 corresponding ta/(0)

=4/3, the broadest of the momentum distributions depicted . .

in Fig. 8. The smooth line in Fig. 9 refers to microcanonical (13- For consistency the latter was computed with a tem-
equilibrium Eq.(11), whereas the symbols indicate simula- Perature obtained by taking thé—c limit of Eq. (8): kT
tion results forp,o(p) for different averaging time intervals: = 6/7- The mean-field particle density is expected to be al-
0<t<10°T, (diamonds, 1CFT,<t<2x1CPT, (crosses re_ady a.good representation for the exact equilibrium density
and 2x10°T,<t<3x1(PT, (squares Corresponding re- distribution forN=40.

sults for the spatial particle distributiomg(x) are shown in

Fig. 10, where the symbols have the same meaning as before, C. The caser=4.5

and where the dashed curve is the mean-field solution of Eq.

This result, the lack of an observable macroscopic relax-
ation of the various distribution functions towards equilib-
rium for v=1.5, led us to examine also a one-dimensional

T system with a value ofv far from the regular harmonic-

PN (I;)

04 v=15 0<t<105 © oscillator caser=2, namely,y=4.5. The same algorithm as
N =40 108 <t <2x 105 +
B 2x105<t<3x108 O
E/N =1

K(0)/E=05
0.3 ©/ 05r =45 _
s 04} N=40 D,
E/N = P i iy 2
S S 03f &/0) ‘:’."iii.'ii
0.2 B o T
o
0.1 7 3 4
% 50000 P

100000

150000

200000

FIG. 11. Relaxation of the momentum distributipR(p) to-
FIG. 9. Momentum distributiom,q(p) for the one-dimensional wards its equilibrium distribution for the linear model with= 4.5,
model with v=1.5, andN=40. The initial virial ratio)(0)=4/3 and N=40. The virial ratio(0)=4/3 corresponds td<(0)/E
corresponds t&(0)/E=0.5. The various symbols are simulation =0.5. The distributions are shown for various run tinte€ach
results and, as indicated by the labels, refer to the time interval usedistribution is an average over a time interval of widtf T Also
for averaging. The smooth curve is the analytical equilibrium dis-displayed, for positivep, is the equilibrium distribution computed
tribution according to Eq.11). The energyE and times are given in  from Eq.(11). The total energ§ and the time are given in units of
units of A andT,, respectivelyp is measured in units ahVy, and N and T, respectivelyp is measured in units ahV,, andpy in
pn in units of (V) 2. units of (mVp) L.
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FIG. 12. Momentum distributiom,(p) for the linear model FIG. 13. Spatial particle distributiom,y(x) for the one-

with v=4.5, andN=40. The initial virial ratio}(0)=0.444 The dimensional model with-=4.5, andN=40. The initial virial ratio
symbols are simulation results, averaged in the intervalldT, V(0)=0.444 The symbols are simulation results, sampled and av-
<t<2.2x10°T,. The smooth curve is the microcanonical equilib- eraged in the interval 2 10°T,<t<2.2x 10fT,. The smooth curve

rium distribution Eq(11). The energ\E is given in units of\, p in is the mean-field solution of E¢13) obtained numerically by itera-
units of mVy, andpy in units of (MVp) 2. tion. The energyE is given in units of\, X in units of o, andny in
units of o~ L.

in Sec. IV B was used. But the results are quite different andind arbitraryv. For the special case of one-dimensional sys-
much more in accord with physical intuition, as becomestems we obtained also the microcanonical momentum distri-
obvious from Fig. 11. There the “instantaneous” momentumbution function inu space. These results are generalizations
distribution py—40(p) for a 40-particle system is shown at to arbitraryd and/orv of well-known results fod=v=1,
various timest during the run, starting from an initial con- the so-called sheet modg?2]. We compared these theoret-
dition with 1(0)=0.444. As in all our simulation&/N=1 jcal results to extensive computer simulations and found ex-
in our reduced units. We observe that after a time of 2cellent agreement for the sheet model. This confirms earlier
X 10°T, the system reaches thermal equilibrium and remaingesyits by Wright and Miller[13]. Also another one-

in it thereafter. The nonlineari?y_ of t.he force introduced by gimensional systemy=4.5, provided excellent agreement
v=4.5 suffices to enhance mixing in phase space, and thgetween simulation and microcanonical prediction. How-
final distributions are independent of the initial conditions. ever, no agreement was found for an intermediate case,

The momentum and spatial particle distributions for thisnamel Z1c This system stubbornly refused fo relax to
equilibrated model are shown in Figs. 12 and 13, respec: Yiv= 2.9 Y Yy

tively, where the averaging interval was<A0PT,<t< 2.2 microcanonical equilibrium and remained in a quasistation-
: i A 0 ' ary state over the whole length i
X 10°T,. The experimental distributiongdiamond$ are Y gth of the runs, which were of

: ) - considerable length. The momentum and density distribution
compared to the respective theoretical predictions shown as cii e
dashed curves, the exact momentum distribution (Eg). in unctions of thgsg quasistationary states depend on the se-
Fig. 12, and the mean-field approximation Ef3) in Fig. lected nonequilibrium initial conqmon. . i
13. The latter was obtained by numerical iteration of @) For the sheet model we applied an exact algorithm, first
with an initial Gaussian trial function. To be consistent, thed€veloped by Benettif21], to the computation of the com-
microcanonical temperature for finits, Eq. (8), was not Plete Lyapunov spectrum for less populated systems for
used for this calculation, but instead [jm..kT=18/13\. which N=<24. Since the algorithm for the dynamics derived
For N=40 the mean-field solution(x) is expected to devi- from Eq.(3) is n_ot pargllelizable in principle, th_e guestion of
ate only very little from the hitherto unknown exact result for extending our simulations to largskis closely linked to the
v=4.5. The agreement between simulation and theory igvailable hardware. We were able to compute the maximum
very good in all cases. Also the partition of the total energyLyapunov exponent foN<64 and are working to extend
into potential and kinetic contributions, Eq9), is well  this range to largeN [31]. Although at present the limited
obeyed by the simulation results, as may be verified fiom range ofN for the available datésee Table)ldoes not allow
listed in Table II. the construction of the large-particle limit for the reduced
Lyapunov spectra depicted in Fig. 6, our results make it very
likely that such a limit exists, as is suggested by thda].
V. DISCUSSION We also found in Fig. 7 that the Kolmogorov-Sinai entropy
In this paper we study the microcanonical equilibriumseems to increase linearly with the number of sheets for
states of many-body systeni$) interacting with a power- N>24. A similar statement has been given beft2&], but
law potential and positive power. We derived the relation this claim was based on data restricted to the rangeé\N3
between temperature and energy for arbitrary dimensgion <10, for which this proportionality does not apply. The
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crossover populatioh.~12 is only slightly larger than the [9] or “stagnant” [15] regions form the neighborhood of
critical population of Reidl and Millef7]. But further data regularity islands is not clear.

for larger N are required before any conclusions can beThe lack of any observable relaxation towards equilibrium
reached. To our knowledge no theoretical predictions existor the one-dimensional systems witl+ 1.5 in Sec. IV B is

for the mean-field limit ofhys/N. surprising. The quasistationary distributions, generated
A key issue for many-body systems is the mixing in phasewithin a few thousand oscillation periods from the initial box
space and the relaxation from an arbitrary initial condition to(waterbag conditions inu space, virialize and persist un-
equilibrium. For the sheet modeall&€ v=1) it is well known  changed for simulation runs lasting for a few million time
that, at least foiN<10, the phase space is separated intaunits. We do not believe that this result is influenced by the
confined and unconnected regions, one chaotic and at ledstct that these simulations were carried out with a simplified
one regular, which supports stable periodic orbits and KAMand nonsymplectic algorithm, since computational noise
tori [7]. Also for N> 10 doubts about ergodicity still persist would lead to enhanced mixing in phase space. It seems that
[9]. We find here folN=10 that after a few million charac- the global relaxation tim&), increases if is raised from its
teristic periods of oscillationt, the systems have relaxed to sheet-model value, unity, to 1.5. It diverges ioapproach-

a state, presumably the equilibrium state for 10, with a  ing the critical value 2 for the harmonic oscillator potential.
well-defined maximum Lyapunov exponent and, whereThis view is supported by the results presented in Sec. IV C
available, a well-defined positive Kolmogorov-Sinai entropyfor systems withv=4.5. The nonlinearity of this pair poten-
per particlehgs/N. These numbers are listed in Table |. tial is large enough to induce sufficient mixing in phase
1/hys is the characteristic time it takes for the phase flow tospace. At present no Lyapunov exponents and Kolmogorov-
distribute a large number of states, initially in a small ball, Sinai entropies are available for~ 1. Such data are planned
over the whole phase spafE9,18. It is surprising that this to be reported in our future worl31].

time is rather short, whereas relaxation to microcanonical

equilibrium takes pla_lce on a much longer time scale. The ACKNOWLEDGMENTS
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